Topological character and magnetism of the Dirac state in Mn-doped Bi2Te3.
نویسندگان
چکیده
First-principles and model calculations show that the Dirac surface state of the topological insulator Bi(2)Te(3) survives upon moderate Mn doping of the surface layers but can lose its topological character as a function of magnetization direction. The dispersion depends considerably on the direction of the Mn magnetization: for perpendicular magnetization, a gap of 16 meV opens up at the Dirac point; for in-plane magnetization, a tiny gap can be opened or closed in dependence on the magnetization azimuth. The ground state is ferromagnetic, with a critical temperature of 12 K. The results provide a path towards a magnetic control of the topological character of the Dirac surface state and its consequences to spin-dependent transport properties.
منابع مشابه
Complex spin texture in the pure and Mn-doped topological insulator Bi2Te3.
Topological insulators are characterized by the presence of spin-momentum-locked surface states with Dirac points that span the fundamental bulk band gap. We show by first-principles calculations that the surface state of the insulator Bi2Te3 survives upon moderate Mn doping of the surface layers. The spin texture of both undoped and Mn-doped Bi2Te3 is much more complicated than commonly believ...
متن کاملDual topological character of chalcogenides: theory for Bi2Te3.
A topological insulator is realized via band inversions driven by the spin-orbit interaction. In the case of Z2 topological phases, the number of band inversions is odd and time-reversal invariance is a further unalterable ingredient. For topological crystalline insulators, the number of band inversions may be even but mirror symmetry is required. Here, we prove that the chalcogenide Bi2Te3 is ...
متن کاملObservation of time-reversal-protected single-dirac-cone topological-insulator states in Bi2Te3 and Sb2Te3.
We show that the strongly spin-orbit coupled materials Bi2Te3 and Sb2Te3 and their derivatives belong to the Z2 topological-insulator class. Using a combination of first-principles theoretical calculations and photoemission spectroscopy, we directly show that Bi2Te3 is a large spin-orbit-induced indirect bulk band gap (delta approximately 150 meV) semiconductor whose surface is characterized by...
متن کاملDevelopment of ferromagnetism in the doped topological insulator Bi2−xMnxTe3
The development of ferromagnetism in Mn-doped Bi2Te3 is characterized through measurements on a series of single crystals with different Mn content. Scanning tunneling microscopy analysis shows that the Mn substitutes on the Bi sites, forming compounds of the type Bi2−xMnxTe3, and that the Mn substitutions are randomly distributed, not clustered. Mn doping first gives rise to local magnetic mom...
متن کاملUltrahigh Sensitivity of Anomalous Hall Effect Sensor Based on Cr-Doped Bi2Te3 Topological Insulator Thin Films
Anomalous Hall effect (AHE) was recently discovered in magnetic element-doped topological insulators (TIs), which promises low power consumption and high efficiency spintronics and electronics. This discovery broadens the family of Hall sensors. In this paper, AHE sensors based on Cr-doped Bi2Te3 topological insulator thin films are studied with two thicknesses (15 and 65 nm). It is found, in b...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physical review letters
دوره 109 7 شماره
صفحات -
تاریخ انتشار 2012